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Eight reasons are given to seek a generalized Fourier’s law of heat conduction and relaxation.
Bounded solutions are obtained for the damped wave conduction and relaxation equation in one
dimension in Cartesian coordinates for a semi-infinite medium subject to the constant wall flux
boundary condition for the dimensionless heat flux and dimensionless temperature. Three different
methods were employed. In the first approach the method of Laplace transforms was used. The solu-
tions are domain restricted. Three regimes can be identified (a) zero transferring regime; (b) rising
regime and (c) falling regime. In the second approach a generalized substitution is used to transform
the hyperbolic PDE into a parabolic PDE. The transform selected is one with spatiotemporal symme-
try. The resulting parabolic PDE can be solved for using the Boltzmann transformation. In the third
approach the damping term was first removed from the governing equation. The resulting equation
was transformed into a Bessel differential equation using a spatiotemporal symmetric transformation
variable. A approximate solution for the flux was obtained. The inertial regime, rising and falling
regimes were identified in the solution. A Chebyshev polynomial approximation was used for the
integrand with modified Bessel composite function in space and time. Telescoping power series leads
to more useful expression for transient heat flux. The temperature and heat flux solutions at the wave
front were also developed. The solution for transient heat flux from the method of relativistic trans-
formation is compared side by side with the solution for transient temperature from the method of
Chebyshev economization. Both solutions are within 12% of each other. For conditions close to the
wave front the solution from the Chebyshev economization is expected to be close to the exact solu-
tion and was found to be within 2% of the solution from the method of relativistic transformation. Far
from the wave front, i.e., close to the surface the numerical error from the method of Chebyshev
economization is expected to be significant and verified by a specific example. The solutions for
dimensionless heat flux and dimensionless temperature is found to be continuous across the wave
front without any singularities or jumps.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Fourier’s law of heat conduction is not universal. There are
eight reasons to seek a generalized Fourier’s law of heat conduc-
tion. These are

(1) Contradiction of Fourier’s law with the theory of microscopic
reversibility of Onsager [1].

(2) Oscillatory discharge of heat in good thermal conductors at
low temperature (Nernst [2]).

(3) Ultra fast laser heating of metals [3], delayed ignition of solid
propellant [4], cannot be described using Fourier’s parabolic
equations.
ll rights reserved.
(4) Landau and Lifshitz [5] noted that the speed of heat cannot
be greater than the speed of light.

(5) Singularities can be seen in the solutions to the Fourier par-
abolic model for industrially important cases:

(i) Blow-up [6] as time goes to zero of surface flux, during tran-
sient heat conduction in a semi-infinite medium subject to
a CWT, constant wall temperature in Cartesian coordinates.

(ii) Surface flux during transient heat conduction in a finite
slab of width 2a subject to a step change in surface
temperature.

(iii) Temperature term in the CWF, constant wall flux problem
in cylindrical coordinates in infinite medium solved for by
using the Boltzmann transformation [7] leading to a solu-
tion in exponential integral [8–12].

(iv) In the short time limit the parabolic equations
are solved for by Boltzmann transformation for an infinite
sphere and a singularity is found in the temperature.
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Nomenclature

Cp heat capacity (J/kg/K)
erf error function
g function of X only
g0 first derivative of g wrt X
g00 second derivative of g wrt X
I0 modified Bessel function of the zeroth order and first

kind
I1 modified Bessel function of the first order and first kind
J0 Bessel function of the zeroth order and first kind
k thermal conductivity (w/m/K)
K0 modified Bessel function of the zeroth order and second

kind
q heat flux (w/m2)
q* dimensionless heat flux (q/qo)
q�0 dimensionless flux at surface s1=2

r q0/(kqCp)1/2(T0)
qo constant wall flux (w/m2)
T temperature (K)
Ts surface temperature (K)
T0 initial temperature (K)

u dimensionless temperature (T � T0)/(T0)
V function of time only
V0 first derivative of V wrt s
V00 second derivative of V wrt s
W wave flux (u = Wexp(-s/2))
X dimensionless ordinate x/(asr)1/2

Y0 Bessel function of the zeroth order and second kind

Greek symbols
a thermal diffusivity (m2/s)
b substitution constant
q density (kg/m3)
sr relaxation time (s)
s dimensionless time (t/sr)
g spatiotemporal transformation variable (s2 � X2)
h spatiotemporal transformation variable (X ± s(1 � b)1/2)
w Boltzmann transformation variable (h/(4bs)1/2)
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(6) Fourier’s law was developed from empirical observations at
steady state and when used in transient applications is a
extrapolation and not adequately confirmed by careful
experimentation.

(7) Over prediction of theory to experiment was found in impor-
tant industrial systems such as fluidized bed heat transfer to
immersed surfaces [13], CPU overheating [14], gel electro-
phoresis [15], restriction mapping [16] adsorption [17],
nuclear fuel rod [18], drug delivery systems [19], when par-
abolic Fourier model is used indicating another mechanism
that has not been considered well.

(8) The Casimir limit [20] or during transfer of heat in nanoscale
regions the Fourier law is replaced withEquation of phonon
radiative transport. In this limit the flux is described by an
expression similar to the one used in radiation heat transfer
[21,22]. The heat transport, for example, in dielectric crystal-
line materials is believed to be primarily by atomic or crystal
vibrations. These vibrations travel as waves and the energy
of the waves quantitated is the phonon [23].

Boley [24] found that the addition of the second derivative in
time of temperature to the governing equation is the only way to
remove the singularities found in the solution to parabolic heat
conduction equations. The generalized Fourier’s law of heat con-
duction can be written as

q ¼ �k
oT
ox
� sr

oq
ot
: ð1Þ

This is the damped wave conduction and relaxation equation.
When the relaxation time, sr is zero Eq. (1) will revert to the Fou-
rier’s law of heat conduction. Reference to the use of Eq. (1) can be
traced back to Maxwell [25] and Morse and Feshbach [26] Cattaneo
[27], [28] and Vernotte [29] postulated this equation indepen-
dently. Eq. (1) can be used to represent the finite speed of heat
and remove the infinite speed implication in the Fourier’s law of
heat conduction. Reviews of the use of Eq. (1) have been provided
by Joseph and Preziosi [30,31] and Ozisik and Tzou [32], Tzou [33]
has discussed the micro to macro scale behavior. Sharma [8–12]
discussed the manifestation of the damped wave transport and
relaxation equation in industrial applications and provided
bounded solutions well within the constraints of second law of
thermodynamics. Some investigators [34] have used the Boltz-
mann [35] transport equation and derived both the Fourier’s law
of heat conduction and the damped wave conduction and relaxa-
tion equation given by Eq. (1) as special cases. They derive a set
of equations for length scales comparable to the mean free path
of the molecule.

Tzou [36] attempted to provide the physical significance of
the relaxation time in the wave theory of heat conduction. The
relaxation time results from the phase-lag between the heat flux
vector and the temperature gradient in a high-rate response.
Brown and Churchil [37] measured the second sound. Peshkov
[38] measured a thermal wave speed of 19 m/s at 1.4 K in He-
lium. Zehnder and Rosakis [39] measured the temperature distri-
bution at the vicinity of the dynamically propagating cracks in
4340 steel. The relaxation mechanism is fundamental to thermal
resonance that cannot be depicted by Fourier’s law of heat con-
duction [40]. For the thermal wave speed around 900 m/s in
4340 steel at 480 �C the value of relaxation time was found to
be of the order of 10�11 s. A table for relaxation time for mate-
rials is not available in the literature. Relaxation times for mate-
rials with a non-homogeneous inner structure were presented by
Kaminski [41]. For Sodium bicarbonate they report a relaxation
time of 29 s and 20 s for sand and 54 s for ion exchange materi-
als. Mitura et al. [42] claim that the for the falling drying rate
period the average relaxation time is of the order of several
thousand seconds. For homogeneous substances the relaxation
time values range from 10�8 to 10�10 s for gases, 10�10–10�12 s
for liquids and dielectric solids as concluded by Sieniutycz
[43]. Mitra et al. [44] presented experimental evidence of the
wave nature of heat propagation in processed meat and demon-
strated that the hyperbolic heat conduction model is an accurate
representation on a macroscopic level of the heat conduction
process in such biological material. They report a relaxation time
of the order of 16 s.

Some investigators have raised some concerns about the gen-
eralized Fourier’s law of heat conduction violating the second law
of thermodynamics [45–49] attempted to obtain analytical solu-
tion to the governing equations and found that the solution tem-
perature for some values went above the boundary temperature
indicating a possible violation of Clausius inequality. Transient
instability, including the intrinsic transition from the desirable



6026 K.R. Sharma / International Journal of Heat and Mass Transfer 51 (2008) 6024–6031
stability, neutral stability to the ultimate unstable response was
investigated by Tzou [49] for a wide spectrum of heating rates.
Tzou confirmed that the relaxation time results from the rate
equation within the mainframe of the second law in the nonequi-
librium, irreversible thermodynamics. Antaki [50] examined the
dual phase-lag equation that was introduced by Tzou and pro-
vided an analytical solution for the case of a semi-infinite med-
ium subject to constant wall flux boundary condition. Sharma
[51] derived the damped wave conduction and relaxation equa-
tion from free electron theory and Stokes–Einstein formulation
[52] and by analogy with mass diffusion. The relaxation time
was found to be a third of the collision time of the electron and
the obstacle. The velocity of heat was found to identical with
the velocity of mass derived from kinetic representation of pres-
sure or the Maxwell representation of the speed of molecules. A
analytical solution for the case of finite slab subject to constant
wall temperature was obtained. The final condition in time as
the fourth condition for the second order hyperbolic PDE govern-
ing equation for the wave temperature was shown to result in
well bounded solutions. This clearly means that care must go into
the choice of the conditions used in the boundary of space and
initial and final time domains. These have to be physically realis-
tic such as at steady state equilibrium temperature is attained.
Only for large relaxation times oscillations were found in the
solution for temperature. These oscillations were subcritical and
damped. The time conditions used by Taitel are unrealistic from
the physical realities of heat transfer and that is why their solu-
tion exhibited a overshoot. Thus the equations do not violate
the laws of thermodynamics as much as the choice of the space
and time conditions as necessary constraints. Baumeister and Ha-
mill [53] presented a analytical solution for the hyperbolic heat
equation in a semi-infinite medium subject to a constant wall
temperature boundary condition by the method of Laplace trans-
forms. They found interface discontinuity in their solution. In this
study the analytical solution of the damped wave conduction and
relaxation equation under the constant wall flux boundary condi-
tion is examined for the case of semi-infinite medium in Carte-
sian coordinates using three different methods – (i) the method
of Laplace transforms (ii) the generalized substitution and trans-
formation of hyperbolic PDE into parabolic PDE and (iii) relativis-
tic transformation of coordinates.

2. Method of laplace transforms

Consider the problem of one dimensional heat conduction and
relaxation in a semi-infinite medium subject to a constant wall flux
at one of the walls (Fig. 1). The semi-infinite medium possess con-
stant thermophysical properties such as Cp, k, q, a and sr, i.e., heat
capacity, thermal conductivity, density, thermal diffusivity and
thermal relaxation time. Obtaining the dimensionless variables

u ¼ ðT � T0Þ
T0

; s ¼ t
sr

; X ¼ xffiffiffiffiffiffiffiffi
asr
p ð2Þ
Fig. 1. Semi-infinite medium subject to constant wall flux at the surface.
The energy balance on a thin shell at x with thickness Dx is written.
The governing equation can be obtained after eliminating q be-
tween the energy balance equation and the derivative with respect
to x of the flux equation and introducing the dimensionless
variables

ou
os
þ o2u

os2 ¼
o2u

oX2 ð3Þ

The initial condition is

t ¼ 0; T ¼ T0; u ¼ 0

The second time condition can be assumed to come from zero accu-
mulation at initial times and written as

t ¼ 0; ou=os ¼ 0

The boundary conditions are

X ¼ 1; T ¼ T0; u ¼ 0 ð4Þ
X ¼ 0; q ¼ qo ð5Þ

Obtaining the Laplace transform of Eq. (2)

s�u� 0þ s2�u� 0� 0 ¼ d2�u

dX2 ð6Þ

It can be seen that the initial temperature, u and the accumulation
term ou/os both are assumed zero at initial times.

Solving for the second order ordinary differential equation

u ¼ a expðþX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
Þ þ b expð�X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
Þ ð7Þ

From the boundary condition given by Eq. (4) as can be seen to be
zero and from the boundary condition given by Eq. (5)

q�0
s
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
ðsþ 1Þ orb ¼ q�0

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1
p

s3=2 ð8Þ

u ¼ q�0
ffiffiffiffiffiffiffiffiffiffiffi
sþ 1
p

s3=2 expð�X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1

p
ÞÞ ð9Þ

Multiplying the numerator and denominator by sqrt(s + 1) and
using the linear property of the Laplace transforms

u
q�0
¼ exp

�s
2

� �
I0ð1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � X2

p
Þ þ

Z s

0
exp � s

2

� �
I0ð1=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q
Þdp ð10Þ

The corresponding solution using the Fourier parabolic model can
be given by [54]

u
q�0
¼

ffiffiffiffiffiffi
4s
p Z 1

x
1� erf

xffiffiffiffiffiffiffiffi
4at
p
� �

d
xffiffiffiffiffiffiffiffi
4at
p
� �

ð11Þ

Thus the temperature profile in a semi-infinite medium subject to a
constant wall flux is obtained. Eq. (10) is applicable in the open
interval of s > X. In the open interval of X > s, it can be seen that
the expression for dimensionless temperature can be written as

u
q�0
¼ exp

�s
2

� �
J0ð1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � s2

p
Þ þ

Z s

0
exp � s

2

� �
J0ð1=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � p2

q
Þdp ð12Þ

Eq. (12) can be arrived at by the realization that I0(ig) = J0(g).
The surface temperature is obtained by inversion of

�u ¼ q�0
s3=2

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1
p

u
q�0
¼ exp � s

2

� �
I0

s
2

� �
þ s exp � s

2

� �
I0

s
2

� �
þ I1

s
2

� �� � ð13Þ
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The flux expression in the Laplace domain can be obtained by not-
ing that q*(s + 1) = �du/dX and by differentiating Eq. (9) with re-
spect to X and seen to be

�q� ¼ q�0
s

expð�X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
Þ ð14Þ

Eq. (14) can also be obtained by writing the governing equation in
the semi-infinite medium in one dimension in terms of heat flux in-
stead of in terms of temperature as written in Eq. (3). The governing
equation in terms of dimensionless heat flux can be seen to be

oq�

os
þ oq�

os2 ¼
oq�

oX2 ð15Þ

The Laplace transform of Eq. (14) upon substitution of boundary
conditions at X =1 and X = 0 can be seen to yield Eq. (14). The
inversion of this expression given in Eq. (13) can be obtained as

q
q0
¼ exp �X

2

� �
þ X

Z s

X
exp � p

2

� � I1ð1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q dp ð16Þ

It can be realized that Eq. (16) is applicable in the open interval,
s > X. At the wave front, the solution for dimensionless heat flux
can be obtained as follows. The damping decaying exponential in
time can be divided out by supposing that the wave heat flux, W
is such that u = Wexp(�s/2). It can be seen that this substitution
transforms Eq. (15) into

o2W
os2 �

W
4
¼ o2W

oX2 ð17Þ

Let g = s2 � X2. It can be seen that Eq. (17) becomes

4g
oW
og
þ 4

oW
og
�W

4
¼ 0 ð18Þ

At the wave front, g = 0 and Eq. (18) becomes,

oW
og
¼ W

16
ð19Þ

The solution of Eq. (19) can be seen to be W = cexp(g/16) or W = c at
the wave front. Thus at the wave front, u = cexp(�s/2) = cexp(�X/2).
From the boundary condition given by Eq. (5) c can be seen to be 1.
At the wave front

q� ¼ exp �X
2

� �
¼ exp � s

2

� �
ð20Þ

The dimensionless temperature can be obtained from the energy
balance equation, i.e., oq�

oX ¼ � ou
os. The dimensionless temperature

can be seen to at the wave front

u ¼ 1� exp � s
2

� �
ð21Þ
3. A generalized substitution for the generalized Fourier’s law of
heat conduction

The governing equation for transient heat flux in one dimension
in Cartesian coordinates can be given by

o2q�

os2 þ
oq�

os
¼ o2q�

oX2 ð22Þ

The parabolic PDE that this can become after a suitable transfor-
mation is

oq�

os
¼ b

o2q�

oh2 ð23Þ
Let h be a general substitution

h ¼ gðXÞ þ VðsÞ ð24Þ

Then

oq�

os ¼ V 0ðsÞ ou
oh

ð25Þ

o2q�

os2 ¼ V 02
o2q�

oh2 þ V 00
oq�

oh
ð26Þ

o2q�

oX2 ¼ g02
o2q�

oh2 þ g00
oq
oh

ð27Þ

Substituting Eqs. (26), (27) in Eq. (25)

oq�

os
¼ o2q�

oX2 �
o2q�

os2 ¼ ðg
02 � V 02Þ o

2q�

oh2 þ ðg
00 � V 0Þ oq�

oh
ð28Þ

Inorder for Eq. (28) to take on the form of Eq. (23)

g00 � V 00 ¼ 0 ð29Þ
g02 � V 02 ¼ b ð30Þ

Thus g0 = sqrt(1 + V02) = c (only then two different functions can
be equal)

g ¼ cZ; g00 ¼ 0 and V 00 ¼ 0 ð31Þ
V 0 ¼ d; V ¼ dsþ e ð32Þ
c2 � d2 ¼ b ð33Þ
d ¼ sqrtðc2 � bÞ ð34Þ

Hence,

g02 � V 02 ¼ b ð35Þ
oq�

os
¼ b

o2q�

oh2 ð36Þ

The substitution, h that made the transformation possible was,

h ¼ c X þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

c2

r !
þ e ð37Þ

Assuming c = 1 and e = 0

h ¼ X � s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ð38Þ

Eq. (36) is a PDE in two variables. One of the variables is the
time variable and the other is the lumped variable that is a func-
tion of both space and time. This has spatiotemporal symmetry.
This can be converted into a ODE in one variable by the Boltzmann
transformation.

Let w ¼ hffiffiffiffiffiffi
4bs
p

b
o2q�

oh2 ¼
1

4s
o2q�

ow2 ð39Þ

oq�

os
¼ �w

4s
oq�

ow
ð40Þ

Substituting Eqs. (39), (40) into Eq. (36)

o2q�

ow2 ¼ �2w
oq�

ow
ð41Þ

Let, p ¼ oq�

ow

� op
p
¼ 2wow ð42Þ

Integrating both sides

lnðpÞ ¼ �w2 þ c0 ð43Þ
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q ¼
Z

expð�w2Þdwþ c00

erfðwÞ ¼ 2ffiffiffiffi
p
p

Z w

0
expð�w2Þdw ð44Þ

Thus

q ¼ c1erfðwÞ þ c2 ð45Þ

From the boundary condition at w =1, where erf(1) = 1, q = 0.

c1 ¼ �c2 ð46Þ

From the boundary condition at the surface, q = qo, when X = 0

h ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p
; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� bÞ

p
2
ffiffiffi
b
p ð47Þ

q0 ¼ c2 1� erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� b

p
ÞÞ

2
ffiffiffi
b
p

 !
ð48Þ

q ¼ c2ð1� erfðwÞÞ ð49Þ

Eliminating c2 between the two Eqs. (48) and (49)

q� ¼ 1� erfðwÞ

1� erfð
ffiffiffiffiffiffiffiffiffi
sð1�b
p

ÞÞ
2
ffiffi
b
p

� � ð50Þ

b can be chosen as follows

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p
2
ffiffiffi
b
p ð51Þ

4bþ b� 1 ¼ 0 ð52Þ
b ¼ 1=5 ð53Þ

Then

q� ¼
1� erf

ffiffi
5
p

Xffiffiffiffi
4s
p þ

ffiffiffi
s
p� �

1� erf
ffiffiffi
s
p

2
4

3
5 ð54Þ

The parabolic PDE can be described by two space and one time
condition. For a PDE of order n, n functions need to be solved for as
against n constants for a ODE of order n. Although the hyperbolic
PDE needs two space and two time conditions for complete
description, it was converted to a parabolic PDE.

4. Method of relativistic transformation of coordinates

The energy balance on a thin spherical shell at x with thickness
Dx is written in one dimension is written as �oq/ox = qCpoT/ot. The
governing equation can be obtained in terms of the flux after elim-
inating the temperature between the energy balance equation and
the non-Fourier expression. This is achieved by differentiating the
generalized Fourier’s law of heat conduction wrt to time and the
energy balance equation wrt to x and then eliminating the second
cross derivative of the temperature with respect to space and time

oq�

os
þ o2q�

os2 ¼
o2q�

oX2 ð55Þ

It can be seen the governing equation for the dimensionless
heat flux is identical in form with that of the dimensionless tem-
perature. The initial condition is

s ¼ 0; q� ¼ 0 ð56Þ

The boundary conditions are

X ¼ 1; q� ¼ 0 ð57Þ
X ¼ 0; q� ¼ 1 ð58Þ
Let us suppose that the solution for q* is of the form Wexp(�ns)
for s > 0 where W is the transient wave flux. Then, For n = 1/2 Eq.
(48) becomes

o2W
os2 �

W
4
¼ o2W

oX2 ð59Þ

The solution to Eq. (59) can be obtained by the following relativistic
transformation for s > X.

Let g = (s2 � X2)

o2W
os2 ¼ 4s2 o2W

og2 þ 2
oW
og

ð60Þ

o2W

oX2 ¼ 4X2 o2W
og2 þ 2

oW
og

ð61Þ

Combining Eqs. (60), (61) into Eq. (59),

4ðs2 � X2Þ o
2W
og2 þ 4

oW
og
�W

4
¼ 0 ð62Þ

g2 o2W
og2 þ g

oW
og
� gW

16
¼ 0 ð63Þ

Eq. (63) can be seen to be a special differential equation in one
independent variable. The number of variables in the hyperbolic
PDE has thus been reduced from two to one. Comparing Eq. (56)
with the generalized form of Bessel’s equation it can be seen that
a = 1, b = 0, c = 0,s = 1/2, d = �1/16. The order of the solution is cal-
culated as 0 and the general solution is given by

W ¼ c1I0

ffiffiffigp
2

� �
þ c2K0

ffiffiffigp
2

� �
ð64Þ

The wave flux W, is finite when g = 0 and hence it can be seen
that c2 can be seen to be zero. The c1 can be solved from the bound-
ary condition given in Eq. (51). The expression for the dimension-
less heat flux for times s, greater than X is thus,

q� ¼ c1 exp � s
2

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � X2

p
2

 !
ð65Þ

From the boundary condition at the surface

q� ¼ 1 ¼ c1 exp � s
2

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � X2

p
2

 !
ð66Þ

Eliminating c1 between Eqs. (58) and (59) a approximate solu-
tion for the heat flux can be obtained as

q� ¼
I0

ffiffiffiffiffiffiffiffiffiffi
s2�X2
p

2

� �
I0

s
2

� � ð67Þ

Eq. (60) is applicable in the open interval, s > X. At the wave
front it can be seen that Eq. (55) can be solved and the dimension-
less heat flux found as q* = exp(�X/2) = exp(�s/2). In the open
interval X > s, the expression for heat flux q* can be seen to be

q� ¼
J0

ffiffiffiffiffiffiffiffiffiffi
s2�X2
p

2

� �
I0

s
2

� � ð68Þ

This can be done in one of two ways. I0(ig) = J0(g). Substituting
this in Eq. (67) in the open interval, X > s, Eq. (67) becomes Eq. (68).
The second way is to redefine g = X2 � s2. Eq. (63) then becomes

g2 o2W
og2 þ g

oW
og
þ gW

16
¼ 0 ð69Þ

Comparing Eq. (69) with the generalized Bessel differential equa-
tion and solving for the integration variables given the boundary



Table 2
Powers of r in terms of the Chebyshev polynomials

1 = T0(r)
r = T1(r)
r2 ¼ 1

2 ðT0ðrÞ þ T2ðrÞÞ
r3 ¼ 1

4 ð3T1ðrÞ þ T3ðrÞÞ
r4 ¼ 1

8 ð3T0ðrÞ þ 4T2ðrÞ þ T4ðrÞÞ
r5 ¼ 1

16 ð10T1ðrÞ þ 5T3ðrÞ þ T5ðrÞÞ
r6 ¼ 1

32 ð10T0ðrÞ þ 15T2ðrÞ þ 6T4ðrÞ þ T6ðrÞÞ
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conditions given by Eq. (58), Eq. (68) results. It can be seen that
J0(is/2) = I0(s/2). From Eq. (69) the inertial lag time associated with
a interior point in the semi-infinite medium can be calculated by
realizing that the first zero of the Bessel function, J0(w) occurs at
w = 2.4048. Thus,

2:40482 ¼
x2

p

asr
�

t2
lag

s2
r

ð70Þ

tlag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p
sr

a
� 5:7831s2

r

r
ð71Þ

The penetration distance for a given time instant can be developed
at the first zero of the Bessel function. Beyond this point by the inte-
rior temperatures can be no less than the initial temperature. Thus,

Xpen ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:7831þ s2

p
ð72Þ
5. Discussion

In order to further study the dimensionless heat flux from the
hyperbolic damped wave conduction and relaxation equation, the
integral expression given in Eq. (16) can be simplified using a
Chebyshev polynomial [55]. Chebyshev polynomial approxima-
tions tend to distribute the errors more evenly with reduced max-
imum error by use of cosine functions. The set of polynomials,
Tn(r) = cos(nh) generated from the sequence of cosine functions
using the transformation

h ¼ cos�1ðrÞ ð73Þ

is called Chebyshev polynomials (Table 1). Coefficients of the

Chebyshev polynomials for the integrand in Eq. (16), I11=2
ffiffiffiffiffiffiffiffiffiffi
p2�X2
pffiffiffiffiffiffiffiffiffiffi
p2�X2
p

can be computed with some effort. The modified Bessel function
of the first order and first kind can be expressed as a power series
as follows

I11=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q ¼
X1
m¼0

ðp2 � X2Þm

42kþ1ðm!Þðmþ 1Þ!
¼ wm

42kþ1ðm!Þðmþ 1Þ!
ð74Þ

where w = p2 � X2.
Each of the wm term can be replaced with its expansion in terms

of Chebyshev polynomials given in Table 2.
The coefficients of like polynomials Ti(r) are collected. When the

truncated power series polynomial of the integrand Eq. (71) is rep-
resented by Chebyshev polynomial, some of the high-order Cheby-
shev polynomials can be dropped with negligible truncation error.
This is because the upper bound for Tn(r) in the interval (�1,1) is 1.
The truncated series can then be re-transformed to a polynomial in
r with fewer terms than the original and with modified coeffi-
cients. This procedure is referred to as Chebyshev economization
or telescoping a power series.

Prior to expression of Eq. (74) in terms of Chebyshev polynomi-
als the interval (X,s) needs to be converted to the interval (�1,1).
So let
Table 1
Chebyshev polynomials

T0(r) = 1
T1(r) = r
T2(r) = 2r2 � 1
T3(r) = 4r3 � 3r
T4(r) = 8r4 � 8r2 + 1
T5(r) = 16r5 � 20r3 + 5r
T6(r) = 32r6 � 48r4 + 18r2 � 1
r ¼ 2w� s� X
s� X

and w ¼ rðs� XÞ þ ðsþ XÞ
2

ð75Þ

Further let

n ¼ ðs� XÞ and g ¼ ðsþ XÞ ð76Þ

Thus,

w ¼ rnþ g
2

ð77Þ

Substituting Eq. (77) in Eq. (74),

I11=2ðp2 � X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q ¼
X1
m¼0

ðrnþ gÞm

2k42kþ1m!ðmþ 1Þ!
ð78Þ

The RHS (right hand side) of Eq. (78) can be written as

RHSEq: ð78Þ ¼ 1
4
þ rnþ g

256
þ ðrnþ gÞ2

49;152
þ � � � ð79Þ

A truncation error of ðrnþgÞ3
18;874;368 is incurred in writing the LHS of Eq.

(78) as Eq. (79). Replacing the r, r2, r3 terms in Eq. (78) in terms of
Chebyshev polynomials given in Table 1 and collecting the like
Chebyshev coefficients, T0, T1 and T2, the RHS of Eq. (75) can be
written as

T0ðrÞ
1
4
þ g

256
þ g2

49;152
þ � � � þ n2

98;304

 !

þ T1ðrÞ
n

256
þ 2gn

49;152
þ � � �

� �
ð80Þ

The T2(r) term can be dropped with an added error of only n2

98;304. The

order of magnitude of the error incurred is thus, O n2

98;304

� �
. Retrans-

formation of the series given by Eq. (77) yields

I11=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � X2

q ¼ 1
4
� X2

128
þ g2

49;152
þ n2

98;304
þ ðp

2 � X2Þ
128

ð81Þ

The error involved in writing Eq. (81) is 4.1 � 10�5gn. If Chebyshev
polynomial approximation was not used for the integrand and the
power series was truncated after the second term, the error would
have been, 4 � 10�3r2. Substituting Eq. (81) in Eq. (16) and further
integrating the expression for dimensionless heat flux

u ¼ exp �X
2

� �
þ X exp �X

2

� �
5
8
þ X

16
þ g2

24;576
þ n2

49:152

 !

þ X exp � s
2

� � 3
8
� s

16
� X2

64
þ g2

24;576
þ n2

49;152

 !
ð82Þ

It can be seen that Eq. (82) can be expected to yield reliable predic-
tions on the transient temperature close to the wave front. This is
because the error increases as a function of 4.1 � 10�5ng. Far from
the wave front, i.e, close to the surface the numerical error may be-
come significant.
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The dimensionless heat flux solution obtained after the Cheby-
shev polynomial approximation for the integrand in Eq. (16) and
further integration is shown in Fig. 2. The conditions selected
was for typical s = 8 Eq. (82) was plotted using a MS Excel spread-
sheet. This is shown in Fig. 2. The expression for temperature
developed by using the method of relativistic transformation for
the same condition of s = 8 is also shown side by side in Fig. 2. It
can be seen that both the Laplace transform solution and the solu-
tion from the relativistic transformation are close to each other,
within a average of 12% deviation from each other. It can also be
seen that close to the surface or far from the wavefront the numer-
ical errors expected from the Chebyshev polynomial approxima-
tion is large. For such conditions the expression developed by the
method of relativistic transformation may be used. For conditions
close to the wavefront the further integrated expression developed
in this study may be used. The penetration dimensionless distance
for s = 8 beyond which there is expected no heat transfer is given
by Eq. (34) and is 8.35 by the method of relativistic transformation.
The Laplace transform solution solution is only for s > X. Both the
solutions for transient temperature for the damped wave conduc-
tion and relaxation hyperbolic equation from the method of La-
place transforms and Chebyshev economization and the method
of relativistic transformation are compared against the prediction
for transient temperature by the Fourier parabolic heat conduction
model. The transient temperature from the Chebyshev economiza-
tion found to be within 25% of the error function solution for the
parabolic Fourier heat conduction model. The hyperbolic model
solutions compare well with the Fourier model solution for tran-
sient temperature close to the wave front and close to the surface
(to within 15% of each other). The deviations are at the intermedi-
ate values. As can be seen from Fig. 2, the integrated expression ap-
pears to reach the boundary temperature at X = 1.3. It cannot be
concluded whether this is within numerical error ir whether it is
a violation of second law of thermodynamics. Further work is
needed to clarify this point.
Fig. 2. Dimensionless heat flux in semi-infinite medium during damped wave
conduction and relaxation, s = 8 and parabolic Fourier heat conduction.
6. Conclusions

Bounded solutions were obtained for the damped wave conduc-
tion and relaxation equation in one dimension in Cartesian coordi-
nates for a semi-infinite medium subject to the constant wall flux
boundary condition. Three different methods were employed. In
the first approach the method of Laplace transforms was used. The
constant wall flux case lends itself to a Laplace transform expression
whose inversion is readily available by looking up the tables for the
temperature profile. The solutions for both the temperature and flux
are provided. The solutions are domain restricted. Three regimes can
be identified (a) zero transferring regime; (b) rising regime and (c)
falling regime. In the second approach a generalized substitution
is examined to convert the hyperbolic PDE into a parabolic PDE.
The transform selected is one with spatiotemporal symmetry. The
resulting parabolic PDE can be solved for using the Boltzmann trans-
formation. Assumptions were made for the lumped ordinate where
needed. The solution is simpler in form compared with those re-
ported in the literature for similar systems. It is not clear what this
means in terms of fundamental mechanisms for heat conduction.
In the third approach the damping term was first removed from
the governing equation. The resulting equation was transformed
into a Bessel differential equation using a spatiotemporal symmetric
transformation variable. A approximate solution for the flux was ob-
tained. The inertial regime, rising and falling regimes were identified
in the solution. The solution for dimensionless heat flux is continu-
ous at the wave front. The heat flux and temperature at the wave
front regardless of the method can be given by Eqs. (20) and (21),
respectively. For short times the removal of damping term from
the hyperbolic PDE may be a reasonable assumption as u = Wexp
(�s/2). For short times, the transient temperature is the wave tem-
perature. For considerable times the wave temperature decays out
and becomes monotonic as described by the Fourier parabolic mod-
el. The exact solution for the hyperbolic PDE consists of three re-
gimes – a inertial regime, a rising regime characterized by Bessel
composite function in space and time and a third regime character-
ized by a modified Bessel composite function in space and time.
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